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FOREWORD

This report describes the results of a computer simulation of the structural response of a
Concentric Canister Launcher (CCL) during a restrained firing, one in which an SM-2 Blk IV
missile would fail to exit the canister.  The work was carried out in support of Naval Surface
Warfare Center, Dahlgren Division (NSWCDD) as part of one author’s (Rosen’s) Naval Reserve
assignment as Commanding Officer of the Naval Reserve Surface Warfare Center Detachment
106, Washington, D.C.  T. C. Kennedy is a Professor of Mechanical Engineering and M. E.
Kassner is the Northwest Aluminum Professor of Mechanical Engineering and Director of the
Graduate Program in Materials Science at Oregon State University, Corvallis, Oregon.  T.
Puttapitukporn is a graduate student at Oregon State University.  R. S. Rosen is a member of
Lawrence Livermore National Laboratory, Livermore, California, and is currently assigned to the
Washington Operations Office in Germantown, Maryland.

J. J. Yagla of the Combat Systems Safety and Engineering Division of the Weapons
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INTRODUCTION

The Office of Naval Research (ONR) and PMS512 have undertaken a program to develop
a new Vertical Launching System (VLS) for future generation ships, such as the DD-21
Destroyer.  The Naval Sea Systems Command Combat Weapons Program (NAVSEA 05K) and
Naval Surface Warfare Center Dahlgren Division (NSWCDD) are working jointly with industry
and universities to develop one such launcher design, the Concentric Canister Launcher (CCL).

The basic CCL design consists of a tube made of two concentric cylinders; one end is
open, the other is sealed with a hemispherical end cap.  During firing, the missile exhaust gas is
turned 180 degrees by the hemispherical end cap and flows through the annular space between
inner and outer cylinders.  Depending on the missile utilized and the particular service environment
of the CCL, maximum temperatures within the cylinder material have been calculated to exceed
2000°F.  In an earlier study [1], the authors determined the high temperature mechanical properties
of several candidate alloys being considered for fabrication of the CCL.  This study [1] found that,
of these candidate materials, titanium alloys exhibit higher yield stresses than that of 316L stainless
steel at temperatures up to about 1000°F; above 1500°F, the yield stress of 316L stainless steel is
comparable to those of the titanium alloys.  The 316L stainless steel was found to strain harden
(increase its flow stress with increasing strain) at temperatures up to about 1800°F.  The ability of
the 316L stainless steel to strain harden at high temperatures may provide an added margin of
safety for engineering design of the CCL.

The objective of the current study was to perform a computer simulation of the structural
response of a CCL during a restrained firing, one in which a SM-2 Blk IV missile would fail to
exit the canister.  A finite element model of the inner cylinder, outer cylinder, end rings (mounting
brackets), and lateral restraints in the uptake was constructed.  An elastic-plastic, quasi-static
analysis was performed using temperature dependent material properties of 316L stainless steel. 
Modeling details are described in the CCL Structure section of this report.

EXPERIMENTAL PROCEDURE

CCL STRUCTURE

A cross section of the CCL, as configured for a SM-2 Blk IV missile, is shown in Fig. 1a.
It consists of an outer cylinder with a diameter of 34 in., four arcs making up a partial inner
cylinder with an inner diameter of 22 in., four channel sections which serve as fin guides
connecting the inner and outer cylinders, and four internal web sections running between the
centers of the inner and outer cylinders in the uptake region.  These radial web sections have been
added along the center of each of the channels as additional support to reduce the potential for
buckling of the inner cylinder wall during restrained firing [2].  The canister section is 261.6 in.
long, and all walls are 0.375 in. thick except for the internal webs that are 0.090 in. thick. At the
bottom is a supporting ring (which is used in the CCL test unit configuration to attach the



hemispherical end cap) with a diameter of 38.245 in. and a length of 1.5 in. along the axis of the
CCL.  A second ring, with a diameter of 35.99 in. and a length of 2 in. along the axis of the CCL,
is located at the top of the tube and serves as a mounting bracket for this test unit.  A full view of
the CCL test unit is shown in Fig. 1b (the hemispherical end cap was not included in the modeling
of the CCL).

The material for all components of the CCL is 316L stainless steel.  The test unit
configuration, as taken from NAVSEA Drawing No. 7250992, consists of a rocket booster motor
located near the bottom end of the CCL, and a set of four dorsal fins located about midway along
the CCL.  The rocket motor casing fits inside the inner cylinder and was modeled as a rigid
cylinder with an outer diameter of 21.045 in. and a length of 56.46 in. starting at a distance of 3.3
in. above the bottom ring.  The restraints provided by the missile fins were modeled as line
restraints acting at the center of the channel sections over an axial length of 62.2 in. beginning at a
distance of 117.9 in. from the bottom ring.  A side view of the CCL configuration as modeled in
this analysis is shown in Fig. 1c.

LOADS

The load on the canister results from high temperature gas flowing through the uptake
regions between the inner and outer cylinders.  The gas applies pressure to the contact surfaces and
causes a temperature rise in the metal.  For the case of the SM-2 Blk IV booster motor, the
duration of a restrained firing would be approximately 6 seconds.  The pressure and temperature
distributions as functions of distance along the cylinder axis (and, for the temperature distribution,
also as functions of distance into the wall thickness) were developed using computational fluid
dynamics (CFD) provided by the Naval Surface Warfare Center [3].  The maximum pressure
distribution (corresponding to 6 seconds of restrained firing) from the CFD analysis is shown in
Fig. 2.  For computational purposes, this distribution was replaced by a linear one given by

p = 54.3-0.0854z (1)

where p is the pressure in psig and z is the distance in inches along the length of the canister,
referenced from z = 0 at the bottom end.  This distribution was based on a linear fit to the highest
pressures along the canister and therefore slightly over-estimates (by less than 3%) the pressure
along part of the length of the canister.  Temperature distributions provided by the Naval Surface
Warfare Center [3] accounted for the variation of temperature as a function of distance into the wall
thickness, and were calculated at several points along the length of the axis (6, 38, 72, 150, and 250
in.).  These plots are shown in Appendix A, and include temperature distributions for times up to 6
seconds firing of the booster motor, where the maximum temperatures occur.  It can be seen that,
after 6 seconds of firing, the 316L stainless steel wall begins to melt (the solidus is 2500°F; the
liquidus is 2550°F) within 0.020 and 0.015 inches of the initial inner surface at 6 and 38 in. along
the CCL, respectively.  Therefore, the inner surfaces of the CCL from z = 0 to z = 38 in. were
reduced in thickness by 0.020 in. in the model to account for erosion from melting.  The
temperatures on the inner surface (distance into the wall equal to 0 in.) and those of the outer
surface (distance into the wall equal to 0.375 in.), were used from these plots to develop the
following functions for the temperature profiles



Ti = 802+11660z-0.5295 (2)

To = 283+25187z-1.015 (3)

where Ti and To are in degrees F for the inner and outer wall surfaces, respectively, and z is in
inches.  A plot of the temperature distribution, as used in this analysis, is shown in Fig. 3.  This
distribution was based on a linear fit from Ti to To and therefore slightly over-estimates the
distribution shown in Appendix A.  Because the CFD modeling did not include the web section
[3], this same temperature distribution and reduction in thickness from melting were also utilized
for the web sections to analyze the deformation of the CCL.  The temperature distribution for the
thinner web material (0.090 in.) is expected to be higher than that of the thicker wall material
(0.375 in.) and, therefore, results of the analysis incorporating web sections should be assumed to
be nonconservative.

MATERIAL PROPERTIES

All components of the CCL that were analyzed were composed of 316L stainless steel. 
Mechanical properties were needed in the temperature range from 70°F to 2500°F.  Young’s
modulus E was obtained from Piatti and Schiller [4] and Brown, Mindlin, and Ho [5].  A least-
squares fit of the data was made to the cubic polynomial

E = (28.8-0.0072T+1.58x10-6T2-9.52x10-10T3)x106 (4)

where E is in psi and T is temperature in degrees F.  Poisson’s ratio was found to be relatively
insensitive to temperature and was taken as a constant value of 0.3.  The coefficient of thermal
expansion α was obtained from [4] and was fit to the cubic polynomial

α = (8.17+0.00322T-1.52x10-6T2+3.06x10-10T3)x10-6 (5)

where T is in degrees F.  Plasticity properties were obtained from stress-strain curves in Kashyap,
McTaggart, and Tangri [6] for temperatures between 70°F and 1652°F.  Plasticity properties at
2000°F and 2500°F were obtained by extrapolating the data from [6] using the relation

dε/dt = Aexp(-Q/RT)(σ/E)n (6)

where dε/dt is the strain rate, Q is the activation energy for plastic flow, σ is the flow stress, n is the
stress exponent, R is the gas constant (8.314 J/moleK), E is Young’s modulus at temperature T in
degrees R, and A is a constant.  It can be assumed that negligible strain hardening, corresponding
to ideal elastic-plastic stress behavior, occurs at temperatures of 2000°F (1366 K) and higher [1].
Therefore, the flow stresses (σ2000, 2500) at 2000°F (T2000) and 2500°F (T2500) were obtained at a strain
rate of dε/dt = 10-3/s from [6] using the relation

σ2000 = σ1(E2000/E1)exp[(Q/R)(1/T2000-1/T1)]
1/n (7)



where σ1 is the flow stress from [6] at T1 = 1652°F (1173 K), Q = 320,000 J/mole and n = 5 from
[7].  The stress-strain curves used in the analysis are shown in Fig. 4.

FINITE ELEMENT MODEL

A finite element model was constructed using the ANSYS program [8].  A four-node,
large strain, quadrilateral shell element was used for all components.  A one-eighth symmetry
model of the CCL was constructed as shown in Fig. 5.  Temperatures and pressures were applied
to the surfaces based on the distributions described in the Loads and Materials Properties sections
of this report.  The shell element assumes a linear variation in temperature through the thickness of
the shell.  This tends to over-estimate the temperature in the metal as noted in the Loads section. 
An elastic-plastic, quasi-static analysis including large deflection and finite strain effects was
performed.

Three load cases were considered in this analysis.  The first includes the restraint effects of
both the rocket motor casing and the missile fins, and was evaluated both with and without the
four internal web sections.  The second includes the restraint effect of the rocket motor casing but
not the missile fins, and was evaluated without the four internal web sections.  The third includes
neither the restraint effects of the rocket motor casing nor the missile fins, and was evaluated
without the four internal web sections.

RESULTS AND DISCUSSION

LOAD CASE 1

The results for load case 1 are shown in Figs. 6 and 7 with and without the web sections
present.  Figs. 6a and 6b show the deformed cross-section shape at the axial position where the
deformation is largest with and without the web sections, respectively.  Figs. 7a and 7b show the
radial displacement at the center of the inner and outer cylinders as a function of axial position with
and without the web sections, respectively.  The horizontal portion of the curve for the inner
cylinder in the range z = 3-60 in. indicates that the inner cylinder has made contact with the rocket
motor casing (corresponding to 0.5 in. deflection).  For the case with web sections (Figs. 6a and
7a), the inner wall deflection does not exceed 0.5 in. even beyond the rocket motor casing, and the
outer wall deflection is limited to about 0.25 in. along the initial 40 in. of the CCL axis.  For the
case without web sections (Figs. 6b and 7b), the inner wall deflection reaches a maximum of
nearly 2.5 in. beyond the rocket motor casing, and the outer wall deflection is a maximum of about
0.75 in. at the same location along the CCL axis (z = 80-90 in.).  The reduced displacement in the
range z = 120-180 in. indicates the restraint effect of the missile fins.  Comparing the two curves, it
is evident that the deformation of the inner and outer cylinders is coupled.

For the CCL without web sections, the maximum equivalent plastic strain in the structure
occurs at the center of the inner cylinder and is 4.8 percent.  For the structure with web sections,



the maximum equivalent plastic strain occurs in the web and is 16.2 percent.  The effect of the web
sections is to produce a significantly reduced deflection in the inner and outer cylinders by carrying
a fairly substantial amount of the load (as evidenced by the 16.2 percent strain).  The ability of the
web to carry this load is predicated on strain hardening of the 316L stainless steel, which occurs at
temperatures below about 1800°F (see Fig. 4 and reference [1]).  However, the deformation of the
CCL modeled with the web sections is believed to be nonconservative due to the assumed web
temperature distribution and reduction in thickness from melting as discussed in the Loads section.
 Hence load cases 2 and 3 were only analyzed without the web sections.

LOAD CASE 2

The results for load case 2 (without missile fins or webs present) are given in Fig. 8, which
shows the radial displacement at the center of the inner and outer cylinders as a function of axial
position.  The results in this figure are similar to that in Fig. 7b but without the missile fin restraint
effect.  The maximum deflections are nearly identical to the case with the missile fins, although the
fins do provide a small amount of restraint as shown by the slightly greater displacement of the
inner cylinder in the range z = 120-180 in.  The maximum equivalent plastic strain in the structure
occurs at the center of the inner cylinder and is 5.1 percent (compared with 4.8 percent with the
fins).

LOAD CASE 3

The results for load case 3 (without rocket motor casing, missile fins, or webs present) are
shown in Fig. 9, which again shows the radial displacement at the center of the inner and outer
cylinders as a function of axial position. The displacements are significantly larger here than in the
previous two load cases because of the absence of the restraint effects of the rocket motor casing
(principally) and the missile fins.  The maximum equivalent plastic strain in the structure occurs at
the center of the inner cylinder and is 7.7 percent (compared with 5.1 percent with the motor casing
and 4.8 percent with the motor casing and fins).  This load case, of course, would never exist
without the rocket motor casing, but it does serve to illustrate the beneficial effect of the restraint
provided by the motor casing along the portion of the CCL where it is most needed (at the highest
temperature and pressure region).

CONSERVATISM OF ANALYSIS

From the stress-strain curves (Fig. 4) it is evident that the CCL wall material should be
sufficiently ductile to withstand this level of strain (less than 8 percent) without fracturing.  For
example, at 1472°F, mill-annealed 316 stainless steel has a typical elongation of 75 percent, with a
2-sigma minimum value of about 65 percent [9].  The minimum ductility for 316 stainless steel
occurs at about 750°F, with a typical elongation of about 40 percent, and a 2-sigma minimum
value of about 30 percent [9].

To determine the sensitivity of the structural response to uncertainties in the internal



pressure, load case 1 (without webs present) was reanalyzed with the pressure described by eq. (1)
increased by a factor of three (163 psi maximum pressure).  The displacements for this case are
shown in Fig. 10.  Comparing this with Fig. 7b, we observe that the maximum displacement has
increased by only about 50 percent (3.5 in. compared with 2.5 in. for the normal pressure case). 
The reason for this relatively small increase is that, as the inner and outer cylinders deform, they
tend to carry more of the load in hoop tension rather than bending; and this is a more efficient
mode for carrying the pressure.  The maximum equivalent strain for this case was 8.9 percent,
which is well within the ductility limit for the material.

Conservatism used in the analysis of the CCL test unit included slightly overestimating (1)
pressure distribution (linear fit to end points of concave upward curve), (2) erosion of wall material
along initial 38 inches of the CCL axis (0.020 in. rather than linear fit to 0.020 at z = 0 and 0.015 at
z = 38 in.), and (3) temperature distribution through the CCL wall (linear fit to end points of
concave upward curves).

SUMMARY

A computer simulation of the structural response of a CCL test unit during an SM-2 Blk
IV restrained firing was performed.  A finite element model of the inner cylinder, outer cylinder,
end rings (mounting brackets), and lateral restraints in the uptake was constructed.  An elastic-
plastic, quasi-static analysis was performed using temperature dependent material properties of
316L stainless steel.  Deflections of the inner and outer cylinder walls occur from loads on the
canister due to high temperature gas flowing through the uptake regions.  Our modeling results
showed that the CCL wall material should be sufficiently ductile to withstand this level of strain
without fracturing, even without the four internal web sections running between the centers of the
inner and outer cylinders in the uptake region.  However, without the web sections, deformation of
the inner cylinder of the CCL between the missile’s dorsal fins and the booster rocket motor casing
would prevent the missile from being easily extracted after restrained firing.  Additionally,
deformation of the outer cylinder may prevent the CCL from being easily extracted from a ship
weapons module after restrained firing.  If these are important considerations, then the CFD
modeling should be reanalyzed with the web sections to determine more accurate temperature
distributions for the web material, and the results can then be used to reanalyze deformation of the
CCL with the web sections present.
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Figure 1a.  CCL test unit shown in cross section



Figure 1b.  CCL test unit shown in full view



Figure 1c. CCL test unit shown in side view with rocket booster case and missile dorsal fins
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Figure 2.  Pressure distribution along the axis of the CCL



Figure 3. Temperature distribution along the axis of the cylinder



Figure 4. Stress-strain curves for 316L stainless steel at various temperatures



Figure 5. One-eighth symmetry finite element model of the CCL



Figure 6a. Deformed cross-section shape at the axial position of maximum deformation:
undeformed structure (dashed lines); deformed structure (solid lines) with webs
present



Figure 6b. Deformed cross-section shape at the axial position of maximum deformation:
undeformed structure (dashed lines); deformed structure (solid lines) without webs
present



Figure 7a. Radial displacement at the center of the inner and outer cylinders as a function of axial
position for load case 1 with webs present



Figure 7b. Radial displacement at the center of the inner and outer cylinders as a function of axial
position for load case 1 without webs present



Figure 8. Radial displacement at the center of the inner and outer cylinders as a function of axial
position for load case 2 (without missile fins or webs present)



Figure 9. Radial displacement at the center of the inner and outer cylinders as a function of axial
position for load case 3 (without rocket motor casing, missile fins, or webs present)



Figure 10. Radial displacement at the center of the inner and outer cylinders as a function of axial
position for load case 1 (without webs present) subjected to over-pressurization



APPENDIX A

TEMPERATURE DISTRIBUTIONS
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Figure A-1. CCL wall temperature as a function of time 6 inches from the base of the cylinder
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Figure A-2. CCL wall temperature as a function of time, 38 inches from the base of the cylinder
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Figure A-3. CCL wall temperature as a function of time, 72 inches from the base of the cylinder
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Figure A-4. CCL wall temperature as a function of time, 150 inches from the base of the cylinder
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Figure A-5. CCL wall temperature as a function of time, 250 inches from the base of the cylinder


